A Closed Analytical Formula for Two-loop Massive Tadpoles with Arbitrary Tensor Numerators

نویسنده

  • K. G. CHETYRKIN
چکیده

Using the integration by parts method we derive a closed analytical expression for the result of the integration of an arbitrary dimensionally regulated tadpole diagram composed of a massless propagator and two massive ones, each raised into an arbitrary power, and including an arbitrary tensor numerator. We also briefly discuss the implementation of the formula in the algebraic manipulation language of FORM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized recurrence relations for two-loop propagator integrals with arbitrary masses

An algorithm for calculating two-loop propagator type Feynman diagrams with arbitrary masses and external momentum is proposed. Recurrence relations allowing to express any scalar integral in terms of basic integrals are given. A minimal set consisting of 15 essentially two-loop and 15 products of one-loop basic integrals is found. Tensor integrals and integrals with irreducible numerators are ...

متن کامل

Numerical evaluation of tensor Feynman integrals in Euclidean kinematics

For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently ‘simple’ numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d = 4 − 2 dimensions. One method uses Mellin–Barnes representati...

متن کامل

Analytical Results for Dimensionally Regularized Massless On-shell Double Boxes with Arbitrary Indices and Numerators

We present an algorithm for the analytical evaluation of dimensionally regularized massless on-shell double box Feynman diagrams with arbitrary polynomials in numerators and general integer powers of propagators. Recurrence relations following from integration by parts are solved explicitly and any given double box diagram is expressed as a linear combination of two master double boxes and a fa...

متن کامل

Tensor Integrals for Two Loop Standard Model Calculations

We give a new method for the reduction of tensor integrals to finite integral representations and UV divergent analytic expressions. This includes a new method for the handling of the γ-algebra. In calculating two loop corrections to the Standard Model one is confronted with two main problems. One is the analytical difficulty of integrals involving different masses. Often one is restricted to a...

متن کامل

Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002